|111_002 Algebraic_Structures

$$
\mathcal{Z}=\{\ldots,-3,-2,-1,0,1,2 \ldots\}
$$

$\langle\mathcal{Z},+,-, \cdot,\rangle ; \mathcal{L}$ is closed with respect to,,+- , operations \mathscr{L} - ring of integers

1. Closure

$$
+,-, 0
$$

2. Associativity

$$
\begin{aligned}
& \forall a, b, c \in \mathcal{L} \rightarrow(a+b)+c=a+(b+c) \\
&(a \cdot b) \cdot c=a \cdot(b \cdot c)
\end{aligned}
$$

3. "O" additively neutral element.

$$
\forall a \in \mathcal{Z}: \quad a+0=0+a=a
$$

4. $\forall a \in \mathcal{Z} \longrightarrow \exists!-a \in \mathcal{L}: a+(-a)=(-a)+a=0$
$-a$ is an additively inverse element.
5. "1" is a multiplicatively neutral element

$$
\forall a \in \mathcal{Z}: a \cdot 1=1 \cdot a=a
$$

6.' Not all elements have multiplicatively inverse elem. such that $a \cdot a^{-1}=a^{-1} \cdot a=1$ except element 1.
7. Distribution property

$$
\forall a, b, c \in \mathcal{Z} \rightarrow a \cdot(b+c)=a \cdot b+a \cdot c
$$

Algorithm in \mathcal{L} :

1. Greatest Common Divider: $>\operatorname{gcd}(a, n)$

$$
\begin{aligned}
& \operatorname{gcd}(6,15)=3 \\
& \operatorname{gcd}(8,15)=1
\end{aligned} \quad \operatorname{gcd}(10,15)=5
$$

If $\operatorname{gcd}(a, n)=1$, then a and n are relatively prime.
2. Extended Euklid Algorithm: $\gg \operatorname{eeuklid}(a, n)$

Operation modulo n : mod.

Pu2.1. $137 \bmod (11)=(5) \quad 137 \quad \frac{11}{27} \quad 11$

$$
137=12 \cdot 11+5
$$

$$
\begin{aligned}
& 137 \\
& \frac{11}{27} \\
& \frac{11}{27} \\
& 22
\end{aligned}
$$

$$
137=12 \cdot(11)+5
$$

Pvz.2. $n=2: \forall a \in \mathcal{Z} \longrightarrow a \bmod 2= \begin{cases}0, & \text { if } a \text { even } \\ 1, & \text { if a odd }\end{cases}$ $a \bmod 2 \in\{0,1\} \quad\{1$, if a odd (σ) $\mathcal{Z} \bmod 2=\{0,1\} ; \quad f_{2}=\bmod 2 \rightarrow f_{2}(\mathcal{Z})=\{0,1\}=\mathcal{L}_{2}$
$f_{2}: \mathcal{Z} \rightarrow \mathcal{L}_{2}=\{0,1\}$
\mathscr{L}_{2} arithmetic : $\left\langle\mathcal{L}_{2}, \oplus, \&\right\rangle$

$$
\begin{aligned}
& \begin{array}{l|ll}
+ & e & \sigma \\
e & e & \sigma \\
\sigma & \sigma & e
\end{array} \quad \begin{array}{l}
\sigma \equiv 0
\end{array} \quad \begin{array}{c|cc}
\oplus & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array} \oplus \begin{array}{c}
\text { XOR } \\
\text { Exclusive OR }
\end{array} \\
& \begin{array}{l|ll}
- & e \\
\hline e & e & e \\
\sigma & e & \sigma
\end{array} \quad \begin{array}{l}
e \equiv 0 \\
\theta \equiv 1
\end{array} \longrightarrow \begin{array}{l|ll}
\& & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array} \quad \text { \& AND } \quad \text { Conjunction }
\end{aligned}
$$

XOR and AND logical operations in Boolean algebra can be illustrated by dartboard game.
Single Boolean variable can be represented by the set of 2 values $\{0,1\}$ or $\{\mathrm{Yes}, \mathrm{No}\}$ or $\{$ True,False $\}$.
Let \boldsymbol{U} is some universal set containing all other sets (we do not take into account paradoxes related with \boldsymbol{U} now).
Let \boldsymbol{A} be a set in \boldsymbol{U}. Then with the set \boldsymbol{A} in \boldsymbol{U} can be associated a Boolean variable $\boldsymbol{b}_{\boldsymbol{A}}=1$ if area \boldsymbol{A} is hit by missile $\boldsymbol{b}_{\boldsymbol{A}}=0$ otherwise.

For this single variable b_{A} the negation (inverse) operation ${ }^{`}$ is defined:
$\boldsymbol{b}_{\boldsymbol{A}}^{\boldsymbol{\nabla}}=0$ if $\boldsymbol{b}_{\boldsymbol{A}}=1$,
$\boldsymbol{b}_{\boldsymbol{A}}^{\boldsymbol{\rightharpoonup}}=1$ if $\boldsymbol{b}_{\boldsymbol{A}}=0$.
Bollean operations are named also as Boolean functions.
Since negation operation/function is performed with the singe variable it is called a unary operation.

There are 16 Boolean functions defined for 2 variables and called binary functions.
Two of them XOR and AND are illustrated below.

1	0	1	1	0	0
0	1	1	0	1	0
1	1	0	1	1	1

Venn diagram of $\mathbf{A} \& \mathbf{B}$ operation.
Venn diagram of $\boldsymbol{A} \oplus \boldsymbol{B}$ operation.

$$
\begin{array}{ll}
\langle\mathcal{L},+,-, *\rangle ; & \left\langle\mathcal{L}_{2,}, \notin, \forall\right\rangle \\
a \in \mathcal{Z}: a+0=a ; & a \in \mathcal{L}_{2}: a \oplus 0=a ; ? a-a=0 \\
& a-a=a \oplus a=0 ; a \oplus b \oplus a=b \oplus 0=b
\end{array}
$$

\mathcal{L}_{3} arithmetics: $\mathscr{L} \bmod 3=\mathscr{L}_{3}=\{0,1,2\}$
$\left(\mathcal{L}_{32}=\{2, \quad 5, \quad 8, \quad 11, \cdots\}\right) \bmod 3=2$

$$
-\frac{9}{9}+\frac{3}{3}
$$

$$
\mathscr{L}=\mathscr{L}_{30} \cup \mathcal{L}_{31} \cup \mathcal{L}_{32} ; \mathcal{L}_{30}, \mathcal{L}_{31}, \mathcal{L}_{32} \text { - are not }
$$ intersecting

\mathcal{I}_{n} arithmetic $(n<\infty): \mathscr{L} \bmod n=\mathscr{L}_{n}=\{0,1,2, \ldots, n-1\} \quad \frac{-n}{n} \frac{n}{0} \frac{n}{1}$
In is a ring with operations $t_{\bmod n}$ ir $\cdot \operatorname{modn}$
$\forall a, b \in \mathcal{I}_{n}: a \underset{T_{\bmod n} b}{ }=c \in \mathcal{I}_{n} \quad \forall$ Inverse operas.

$$
a \cdot \bmod n b=d \in \mathcal{I}_{n}-\bmod n \quad \bmod n
$$

$a+b=c \bmod n$
$a \cdot b=d \bmod n$
Operation properties:
$(a+b) \bmod n=(a \operatorname{mad} n+b \bmod n) \bmod n$
$(a \cdot b) \bmod n=(a \bmod n \cdot b \bmod n) \bmod n$
$O \equiv \bmod n$

$$
(a-b) \bmod n=\left\{\begin{array}{l}
a-b, j e i a \geqslant b ; a, b<n \\
a+n-b, j e i a<b
\end{array} ;\right.
$$

For given $b \in \mathcal{I}_{n}$. Find: $-b \in \mathscr{L}_{n}: b+(-b)=0 \in \mathscr{L}_{n}$
$-b \bmod n=(0-b) \bmod n=(n-b) \bmod n=n-b$

$$
(b+(-b)) \bmod n=(b+n-b) \operatorname{mad} n=(0+n) \bmod u=n \bmod n=0_{0}
$$

$$
\begin{aligned}
& >m b=\bmod (-b, n) \\
& \gg \bmod (b+m b, n) \\
& 0 \\
& \text { Let } n=p=11: \mathcal{Z}_{p}=\{0,1,2, \ldots, p-1\} \\
& \text { Then } \mathcal{Z}_{10}=\{0,1,2,3, \ldots, 10\} ;{ }^{\bmod 11 ;}{ }_{\bmod 11}{ }^{*}{ }^{\bmod 11 ;} / \bmod 11 \\
& \text { >> } p=11 \\
& p=11 \\
& \text { >> a=5 } \\
& a=5 \\
& \text { >> } b=9 \\
& b=9 \\
& \text { >> aadb=a+b } \\
& \text { aadb }=14 \\
& \gg \text { aadbp }=\bmod (a+b, p) \\
& \text { aadbp }=3 \\
& \text { >> amubp }=\bmod \left(a^{*} b, p\right) \\
& \text { Number expressed by } 4 \text { bits is } \\
& a=5 \\
& \text { >> b=9 } \\
& \text { amubp = } 1 \\
& \text { >> } a=23 \\
& \text { n=int64(2^28-1) } \\
& a=23 \\
& \text { >> b=16 } \\
& \mathscr{L}_{p}^{*}=\{1,2,3, \ldots, p-1\} \\
& \text { Let we have any set } \boldsymbol{G} \text { (not necessary finite) consisting of the elements of any nature, ide. } \boldsymbol{G}=\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \ldots, \boldsymbol{z} \text {, } \\
& \text {...\}. } \\
& \text { 1. Definition. A set } G \text { is an algebraic group if it is equipped with a binary operation } \bullet \text { that satisfies } \\
& \text { four axioms: } \\
& \text {. Operation } \bullet \text { is closed in the set; for all } \boldsymbol{a}, \boldsymbol{b} \text {, there exists unique } \boldsymbol{c} \text { in } \mathbf{G} \text { such that } \boldsymbol{a} \bullet \boldsymbol{b}=\boldsymbol{c} \text {. } \\
& \text { 2. Operation } \bullet \text { is associative; for all } \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \text { in } \boldsymbol{G}:(\boldsymbol{a} \bullet \boldsymbol{b}) \bullet \boldsymbol{c}=\boldsymbol{a} \bullet(\boldsymbol{b} \bullet \boldsymbol{c}) \text {. } \\
& \text { 3. Group } \boldsymbol{G} \text { has an neutral element abstractly we denote by } \boldsymbol{e} \text { such that } \boldsymbol{a} \bullet \boldsymbol{e}=\boldsymbol{e} \bullet \boldsymbol{a} \text {. }=\boldsymbol{a} \text {. } \\
& \text { 4. Any element } \boldsymbol{a} \text { in } \boldsymbol{G} \text { has its inverse } \boldsymbol{a}^{-1} \text { with respect to } \bullet \text { operation such that } \boldsymbol{a} \bullet \boldsymbol{a}^{-1}=\boldsymbol{a}^{-1} \bullet \boldsymbol{a}=\boldsymbol{e} \text { when } \boldsymbol{e} \text { is neutral el. } \\
& \text { For curiosity, can be said that group axioms seems very simple but groups and their mappings describes a } \\
& \text { very deep and fundamental phenomena in physics and other sciences. Among these mappings a special } \\
& \text { importance have mappings preserving operations from one group to another called isomorphisms, or } \\
& \text { homomorphisms and morphisms in general. Isomorphisms have a great importance in cryptography to realize } \\
& \text { a secure confidential cloud computing. It is named as computation with encrypted data. The systems having } \\
& \text { a holomorphic property are named as holomorphic cryptographic systems. They are under the development } \\
& \text { and are very useful in creation of secure e-voting systems, confidential transactions in blockchain and etc. We } \\
& \text { do not present there the construction of these systems and postpone it to the further issues of BOCTII, say in } \\
& \text { BOCTII.2. There we present one very important isomorphism example later when consider so called discrete } \\
& \text { exponent function (DEF). }
\end{aligned}
$$

T1. Theorem. If p is prime, then $\mathcal{L}_{p}^{*}=\{1,2,3, \ldots, p-1\}$ where operation
is multiplication mod p is a multiplicative group.
Example: $P=11 \Rightarrow \mathcal{Z}_{11}^{*}=\{1,2,3, \ldots, 10\}$

Multiplication Tab.
Z_{11} *

$$
2 \cdot 6=12 \bmod 11=1
$$

$$
\begin{array}{c|c}
1211 \\
\hline 11 & 1 \\
\hline 1 & \\
\hline
\end{array}
$$

$$
4 \cdot 3 \bmod 11=12 \bmod 11=1\}
$$

$$
\left.4.4^{-1} \bmod 11=(4 / 4)=1\right\}
$$

$$
4^{-1}=3 \bmod 11
$$

$$
5 \cdot 9=45 \bmod 11=1 \pi
$$

$$
5^{-1} \text { mod } 11=945 \frac{11}{4}
$$

Discrete Exponent Function DEF:

Power
Tab. Z_{11} *

$\boldsymbol{1}$	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	5	10	9	7	3	6	1
3	1	3	9	5	4	1	3	9	5	4	1
4	1	4	5	9	3	1	4	5	9	3	1
5	1	5	3	4	9	1	5	3	4	9	1
6	1	6	3	7	9	10	5	8	4	2	1
7	1	7	5	2	3	10	4	6	9	8	1
8	1	8	9	6	4	10	3	2	5	7	1
9	1	9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1	10	1

$$
\begin{aligned}
& \mathcal{I}_{11}^{*}=\{1,2,3, \ldots, 10\} \\
& \mathcal{I}_{10}=\{0,1,2,3,4,5,6,7,8,9\} \\
& \operatorname{DEF}: \mathcal{L}_{10} \rightarrow \mathcal{L}_{11}^{*} \\
& \operatorname{DEF}_{2}(x)=2^{x} \bmod 11=a \in \mathcal{L}_{11}^{*}
\end{aligned}
$$

Till this place
$\left.\operatorname{carol}\left(\mathcal{L}_{10}\right)=\left|\mathcal{L}_{10}\right|=10\right\} \operatorname{card}\left(\mathcal{Z}_{10}\right)=\operatorname{card}\left(\mathcal{L}_{11}^{*}\right)$
$\operatorname{Card}\left(\mathcal{\alpha}_{11}^{n}\right)=\left|\alpha_{11}\right|=10 \mid$
It is proved that:
if P is prime, then there exists such numbers g that $D E F g(x)$ provides 1 -to-d or bijective mapping.

Let G be a finite group with $\operatorname{lard}(G)=|G|=N$.
Def. 1. The element g is a generator if $g^{i}, i=0,1,2, N-1$, generates all N elements of G.
Def.2. The group G which can be generated by generator g is a cyclic group and is denoted by $\langle g\rangle=G$.

Cyclic Group: $\boldsymbol{Z}_{p}{ }^{*}=\{1,2,3, \ldots, p-1\} ; \boldsymbol{\operatorname { m o d }} p,: \bmod p$.
Let p is prime.
Then p is strong prime if $\boldsymbol{p}=2 \boldsymbol{q}+1$ where $\boldsymbol{q}=(p-1) / 2$ is prime as well.
Then g in $\boldsymbol{Z}_{P}{ }^{*}$ is a generator of $\boldsymbol{Z}_{P}{ }^{*}$ if and only if
(ff) $g^{2} \neq 1 \bmod p$ and $g^{q} \neq 1 \bmod p$.

If $p=11$, then

$$
\begin{aligned}
& q=(11-1) / 2=5 \\
& p, q \text { are primes }
\end{aligned}
$$

For example, let p is strong prime and $p=11$, then one of the generators is $g=2$.
Verification method: $g^{2} \neq 1 \bmod p$ and $g^{q} \neq 1 \bmod p$.
The main function used in cryptography is Discrete Exponent Function - DEF:
$\operatorname{DEF}_{g}(x)=g^{x} \bmod p=a$.

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas, at al.] $\quad z \in \mathcal{L}_{p}^{*}$

$$
\rightarrow p-1 \quad ح^{0}-1 \operatorname{man} n
$$

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas, at al.]

$$
z^{p-1}=1 \bmod p
$$

$$
\begin{aligned}
& z \in \mathcal{L}_{p}^{*} \\
& z^{p-1}=Z^{0}=1 \bmod p \\
& z^{k} \bmod p=z^{k \bmod p-1)} \\
& p-1 \equiv 0 \bmod p
\end{aligned}
$$

How to find inverse element to $z \bmod n$?
>> mulinv (z, n)
Inverse elements in the Group of integers $\left\langle\mathbf{Z}_{\mathbf{p}}{ }^{*}, \bullet_{\bmod p}\right\rangle$ can be found using either
Extended Euclidean algorithm or Fermat theorem, or ...
Let we have \boldsymbol{z} in $\boldsymbol{Z}_{p}{ }^{*}$, then to find $\boldsymbol{z}^{\mathbf{- 1}} \bmod p$ it can be done by Octave:

$$
\begin{aligned}
& \gg z_{-} m 1=\operatorname{mulinv}(z, p) \\
& z \in \mathcal{L}_{p}^{*} \text { i to find } z^{-1} \text { such that } z \cdot z^{-1}=z^{-1} * z=1 \bmod p \\
& z^{p-1}=1 \bmod p / \cdot z^{-1} \Rightarrow z^{p-1} \cdot z^{-1}=z^{-1} \bmod p \Rightarrow z^{-1}=z^{p-2} \bmod p \\
& \Rightarrow z^{-1}=z^{p-1} \cdot z^{-1} \bmod p \Rightarrow z^{p-2} \bmod p
\end{aligned}
$$

Operations in exponents.

$$
\left.\begin{array}{l}
a^{r} \cdot a^{s} \bmod p=a^{(r+s) \bmod (p-1)} \bmod p \\
\left(a^{r}\right)^{s} \bmod p=a^{(r \cdot s) \bmod (p-1)} \bmod p
\end{array}\right\} \text { According to Fermat th. }
$$

Let we need to compute expression: $g^{s \bmod (p-1)} \bmod p$ where s is in exponent of the generator g,
when $s=(i+x \cdot h) \bmod (p-1) ; r=g^{i} \bmod p$.

$$
\begin{aligned}
& \sigma=(r, s) \\
& g^{s \bmod (p-1)} \bmod p=g^{(i+x \cdot h) \bmod (p-1)} \bmod p=q^{i} \cdot\left(q^{x}\right)^{h}=r \cdot a^{h} \bmod p .
\end{aligned}
$$

Discrete exponent function : $a=g^{*} \bmod p ; p \sim 2^{2048} \approx 10^{700}$
$\gg a=\bmod _{-\exp }(q, x, p)$
>> mod_exp $(2,3,7)$
ans $=1$
We will deal with integers of 28 bits $n \sim 2^{28}-1$
>> pi
ans $=3.1416$
>> xrange=16* pi
xrange $=50.265$
>> step=xrange/128
step $=0.3927$
>> x=0:step:xrange;
$\gg y=\sin (x)$;
$\gg \operatorname{comet}(x, y)$

>> $p=127$
$p=127$
$\gg g=23$
$g=23$
$\gg x=0: p-1$;
$\gg a=m o d _\operatorname{expv}(g, x, p)$
>> comet(x, a)

OWE
One-way-functions: Discrete Exponent Function (DEE) is a conjectured (OWF)

1) It is easy to complete $a=q^{x} \bmod p$, when x, g, p are given.
2) It is infeasible to find any x satisfying the condition $a=y^{x} \bmod p$ when a, g, p are given.
Yaw theorem: if pseudo random numbers generators exist \Leftrightarrow OWEs exist \& vise versa!
